2023
[1]. Ma, L., Wang, Q., Kerr, A.C., Li, Z.X., Dan, W., Yang, Y.N., Zhou, J.S., Wang, J., Li, C., 2023. Eocene magmatism in the Himalaya: Response 1 to lithospheric flexure during early Indian collision? Geology, 51(1), 96–100, DOI:10.1130/G50438.1.
2022
[2]. Wang, J., Gleeson, M., Smith, W.D., Ma, L., Lei, Z.B., Shi, G.H., Chen, L., 2022. The Factors Controlling Along-arc and Across-arc Variations of Primitive Arc Magma Compositions: A Global Perspective, Frontiers in Earth Science. DOI: 10.3389/feart.2022.1055255
[3]. Zhou, J.S., Huang, C.C., Wang, Q., Ren, Z.Y., Ma, L., Hao L.L., Zhang L., 2022. Olivines and Their Melt Inclusions in Potassic Volcanic Rocks Record Mantle Heterogeneity beneath the Southern Tibet, Journal of Petrology, 63(11), https://doi.org/10.1093/petrology/egac103.
[4]. Fan, J. J., Wang, Q., Ma, L., Li, J., Zhang, X.Z., Zhang, L., Wang, Z.L., 2022. Extreme Mo isotope variations recorded in high-SiO2 granites: Insights into magmatic differentiation and melt–fluid interaction. Geochimica et Cosmochimica Acta, 334, 241-258. https://doi.org/10.1016/j.gca.2022.08.009.
[5]. Zhang, M.-Y., Hao, L.-L., Wang, Q., Qi, Y., Ma, L., 2022. B–Sr–Nd isotopes of Miocene trachyandesites in Lhasa block of southern Tibet: Insights into petrogenesis and crustal reworking. Frontiers in Earth Science, 10:953364, doi: 10.3389/feart.2022.953364.
[6]. Hao, L. L., Wang, Q., Ma, L., Qi, Y., & Yang, Y. N., 2022. Differentiation of continent crust by cumulate remelting during continental slab tearing: Evidence from Miocene high-silica potassic rocks in southern Tibet. Lithos, 106780.
[7]. Liu, X., Liang, H., Wang, Q.*, Ma, L.*, Yang, J.H., Guo, H.F., Xiong, X.L., Ou, Q., Zeng, J.P., Gou, G.N., Hao, L.L., 2022. Early Cretaceous Sn-bearing granite porphyries, A-type granites, and rhyolites in the Mikengshan–Qingxixiang–Yanbei area, South China: Petrogenesis and implications for ore mineralization. Journal of Asian Earth Sciences,105274.
[8]. Tang, G.J., Wyman, D.A., Wang, Q. Ma, L., Dan, W., Yang, Y.N., Liu, X.J., Chen, H.Y., 2022. Links between continental subduction and generation of Cenozoic potassic–ultrapotassic rocks revealed by olivine oxygen isotopes: A case study from NW Tibet. Contributions to Mineralogy and Petrology, 177, 53. https://doi.org/10.1007/s00410-022-01920-x
[9]. Hao, L.L., Wang, Q., Kerr, A.C., Wei, G.J., Huang, F., Zhang, M.Y., Qi, Y., Ma, L., Chen, X.F., Yang, Y.N., 2022. Contribution of continental subduction to very light B isotope signatures in post-collisional magmas: Evidence from southern Tibetan ultrapotassic rocks. Earth and Planetary Science Letters, 584, 117508. https://doi.org/10.1016/j.epsl.2022.117508.
[10]. Huang T.Y., Wang, Q., Wyman, D.A., Ma, L., Zhang, Z.P., Dong, H., 2022. Subduction erosion revealed by Late Mesozoic magmatism in the Gangdese arc, South Tibet. Geophysical Research Letters. 49, e2021GL097360. https://doi.org/10.1029/2021GL097360.
2021
[11]. Ma, L., Gou, G.N., Kerr, A.C., Wang, Q.*, Wei, G.J., Yang, J.H., Shen, X.M., 2021. B isotopes reveal Eocene mélange melting in northern Tibet during continental subduction. Lithos, 106146, https://doi.org/10.1016/j.lithos.2021.106146.
[12]. Ma, L.*, Wang, Q., Kerr, A.C., Tang, G.J., (2021). Nature of the pre-collisional lithospheric mantle in Central Tibet: Insights to Tibetan Plateau uplift. Lithos, 106076. https://doi.org/10.1016/j.lithos.2021.106076
[13]. Fan, J.-J., Wang, Q.*, Li, J., Wei, G.-J., Ma, J.-L., Ma, L.*, Li, Q.-W., Jiang, Z.-Q., Zhang, L., Wang, Z.-L., and Zhang, L., 2021, Boron and molybdenum isotopic fractionation during crustal anatexis: Constraints from the Conadong leucogranites in the Himalayan Block, South Tibet.Geochimica et Cosmochimica Acta, 297, 120-142. https://doi.org/10.1016/j.gca.2021.01.005.
[14]. Liu, X., Wang, Q.*, Ma, L.*, Yang, J.H., Ma, Y.M., and Huang, T.Y., 2021. Early Paleozoic and Late Mesozoic crustal reworking of the South China Block: Insights from Early Silurian biotite granodiorites and Late Jurassic biotite granites in the Guangzhou area of the south-east Wuyi-Yunkai orogeny. Journal of Asian Earth Sciences, 219: 104890.
[15]. Liu, X., Wang, Q.*, Ma, L.*, Gou, G.N., Ou, Q. and Wang, J., 2021. Late Jurassic Maofengshan two‐mica granites in Guangzhou, South China: fractional crystallization products of metasedimentary‐rock‐derived magmas. Mineralogy and Petrology, 1-19. https://doi.org/10.1007/s00710-020-00733-9
[16]. Zhou, J.S., Wang, Q., Xing, C.M., Ma, L., Hao, L.L., Li, Q.W., Wang, Z.L., Huang, T.Y., 2021. Crystal growth of clinopyroxene in mafic alkaline magmas. Earth and Planetary Science Letters. 568: 117005. https://doi.org/10.1016/j.epsl.2021.117005.
[17]. Yang, Z.Y., Wang, Q., Hao, L.L., Wyman, D.A., Ma, L., Wang, J., Qi, Y., Sun, P. and Hu, W.L., 2021. Subduction erosion and crustal material recycling indicated by adakites in central Tibet. Geology. 49(6): 708–712, https://doi.org/10.1130/G48486.1
[18]. Hu, W.-L., Wang, Q*, Yang, J.-H., Tang, G.-J., Ma, L., Yang, Z.-Y., Qi, Y., and Sun, P., 2021. Petrogenesis of Late Early Cretaceous high-silica granites from the Bangong–Nujiang suture zone, Central Tibet. Lithos, 402–403, 105788. https://doi.org/10.1016/j.lithos.2020.105788.
[19]. Hao L.-L., Wang, Q*, Kerr A. C., Yang J.-H., Ma L., Qi Y., Wang J., and Ou Q. 2021. Post-collisional crustal thickening and plateau uplift of southern Tibet: Insights from Cenozoic magmatism in the Wuyu area of the eastern Lhasa block. GSA Bulletin, 133 (7-8), 1634–1648, https://doi.org/10.1130/B35659.1.
[20]. Xia X.-P., Meng J.-T., Ma L., Spencer C.J., Cui Z.X., Zhang W.F., Yang Q., Zhang L., 2021. Tracing magma water evolution by H2O-in-zircon: A case study in the Gangdese batholith in Tibet. Lithos, 106445. https://doi.org/10.1016/j.lithos.2021.106445.
2020
[21]. Liu, X., Wang, Q.*, Ma, L.*, Yang, J.H., Gou, G.N., Ou, Q. and Wang, J., 2020. Early Paleozoic intracontinental granites in the Guangzhou region of South China: Partial melting of a metasediment-dominated crustal source. Lithos, 376, p.105763.
[22]. Liu, X., Wang, Q.*, Ma, L.*, Wyman, D.A., Zhao, Z.H., Yang, J.H., Zi, F., Tang, G.J., Dan, W., Zhou, J.S.. 2020. Petrogenesis of Late Jurassic Pb–Zn mineralized high δ18O granodiorites in the western Nanling Range, South China. Journal of Asian Earth Sciences, 192, 104236. https://doi.org/10.1016/j.jseaes.2020.104236.
[23]. Liu X., Wang Q.*, Ma L.*, Yang Z.Y., Hu W.L., Ma, Y.M., Wang J., Huang T.Y., 2020. Petrogenesis of Late Jurassic two-mica granites and associated diorites and syenite porphyries in Guangzhou, SE China. Lithos. 364-365, 105537.
[24]. Hao, L.L., Wang, Q., Kerr, A.C., Yang, J.H., Ma, L., Qi, Y., Wang, J. and Ou, Q., 2020. Post-collisional crustal thickening and plateau uplift of southern Tibet: Insights from Cenozoic magmatism in the Wuyu area of the eastern Lhasa block. GSA Bulletin. doi: https://doi.org/10.1130/B35659.1
[25]. Hu, W.L., Wang, Q., Yang, J.H., Tang, G.J., Qi, Y., Ma, L., Yang, Z.Y., Sun, P., 2020. Amphibole and whole-rock geochemistry of early Late Jurassic diorites, Central Tibet: Implications for petrogenesis and geodynamic processes. Lithos, 105644. https://doi.org/10.1016/j.lithos.2020.105644.
[26]. Fan, J.J., Li, J., Wang, Q., Zhang, L., Zhang, J., Zeng, X.L., Ma, L., Wang, Z.L., 2020. High-precision molybdenum isotope analysis of low-Mo igneous rock samples by MC–ICP–MS. Chemical Geology. 545, 119648. https://doi.org/10.1016/j.chemgeo.2020.119648.
[27]. Tang, G.J.*, Wang, Q., Wyman, D.A., Dan, W., Ma, L., Zhang, H.X., Zhao, Z.H.. 2020. Petrogenesis of the Ulungur Intrusive Complex, NW China, and Implications for Crustal Generation and Reworking in Accretionary Orogens. Journal of Petrology, https://doi.org/10.1093/petrology/egaa018
2019
[28]. Ma, L., Kerr, A. C., Wang, Q., Jiang, Z.‐Q., Tang, G.‐J., Yang, J.‐H., et al. (2019). Nature and evolution of crust in southern Lhasa, Tibet: Transformation from microcontinent to juvenile terrane. Journal of Geophysical Research: Solid Earth, 124, 6452–6474. https://doi.org/10.1029/2018JB017106.
[29]. Hao, LL; Wang, Q; Wyman, DA; Yang, JH; Huang, F., Ma, L., Crust-mantle mixing and crustal reworking of southern Tibet during Indian continental subduction: Evidence from Miocene high-silica potassic rocks in Central Lhasa block. Lithos, 2019, 342: 407-419.
[30]. Ou, Q., Wang, Q., Wyman, D.A., Zhang, C.F., Hao, L.L., Dan, W., Jiang, Z.Q., Wu, F.Y, Yang, J.H., Zhang, H.X., Xia, X.P., Ma, L., Long, X.P., Li, J., Postcollisional delamination and partial melting of enriched lithospheric mantle: Evidence from Oligocene (ca. 30 Ma) potassium-rich lavas in the Gemuchaka area of the central Qiangtang Block, Tibet. Geological Society of America Bulletin, 2019, 131(7-8): 1385-1408.
[31]. Hao, L. L., Wang, Q., Wyman, D. A., Ma, L., Wang, J., Xia, X. P., Ou, Q. 2019. First identification of postcollisional A-type magmatism in the Himalayan-Tibetan orogen. Geology. 47(2), 187–190.
[32]. Yang, Z.Y., Wang, Q., Yang, J.H., Dan, W., Zhang, X.Z., Ma, L., Qi, Y., Wang, J., Sun, P., 2019. Petrogenesis of Early Cretaceous granites and associated microgranular enclaves in the Xiabie Co area, central Tibet: Crust-derived magma mixing and melt extraction. Lithos. 350–351, 105199. https://doi.org/10.1016/j.lithos.2019.105199
[33]. Ma, Y.M. Wang, Q., Wang, J., Yang, T.S., Tan, X.D., Dan, W., Zhang, X.Z., Ma, L., Wang, Z.L., Hu, W.L., Zhang, S.H., Wu, H.C., Li, H.Y., Cao, L.W., 2019. Paleomagnetic constraints on the origin and drift history of the North Qiangtang terrane in the Late Paleozoic. Geophysical Research Letters, 46, 689–697.
[34]. Yang, Z.Y., Wang, Q., Zhang, C.F., Yang, J.H., Ma, L., Wang, J., Sun, P., Qi, Y., 2019. Cretaceous (~100?Ma) high-silica granites in the Gajin area, Central Tibet: Petrogenesis and implications for collision between the Lhasa and Qiangtang Terranes. Lithos, 324–325:402-417.
2018
[35]. Ma, L., Kerr, A.C., Wang, Q., Jiang, Z.Q., Hu, W.L., 2018. Early Cretaceous (~140 Ma) aluminous A-type granites in the Tethyan Himalaya, Tibet: products of crust-mantle interaction during lithospheric extension. Lithos, 300-301, 212-226. doi: 10.1016/j.lithos.2017.11.023.
[36]. Hao, L. L., Wang, Q.*, Wyman, D. A., Qi, Y., Ma, L., Huang, F., Zhang, L., Xia, X. P., Ou, Q.. 2018. First identification of mafic igneous enclaves in Miocene lavas of southern Tibet with implications for Indian continental subduction. Geophysical Research Letters, 45(16), 8205-8213. https://doi.org/10.1029/2018GL079061.
[37]. Shen, X., Zhang, H.X., Wang, Q., Saha, A., Ma, L., 2018. Zircon U–Pb geochronology and geochemistry of Devonian plagiogranites in the Kuerti area of southern Chinese Altay, northwest China: Petrogenesis and tectonic evolution of late Paleozoic ophiolites. Geological Journal, 53(5), 1886-1905. doi: 10.1002/gj.3020.
2017
[38]. Ma, L., Wang, Q., Kerr, A.C., Yang, J.H., Xia, X.P., Ou, Q., Yang, Z.Y., Sun, P., 2017. Paleocene (ca. 62 Ma) leucogranites in southern Lhasa, Tibet: products of syn-collisional crustal anatexis during slab roll-back? Journal of Petrology, 58(11): 2089-2114.
[39]. Ma, L., Wang, Q., Li, Z.X., Wyman, D.A., Yang, J.H., Jiang, Z.Q., Liu, Y.S., Gou, G.N., Guo, H.F. 2017. Subduction of Indian continent beneath southern Tibet in the latest Eocene (~35 Ma): Insights from the Quguosha gabbros in southern Lhasa block. Gondwana Research, 41, 77-92, doi:10.1016/j.gr.2016.02.005.
2016
[40]. Wang, Q., Hawkesworth, C. J., Wyman, D. A., Chung, S. L., Wu, F. Y., Li, X. H., Li, Z. X., Gou G. N., Zhang, X. Z., Tang, G. J., Dan, W., Ma, L., Dong, Y. H., 2016. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nature communications, 7:11888, doi: 10.1038/ncomms11888.
2015
[41]. Ma, L., Wang, Q., Wyman, D. A., Jiang, Z.Q., Wu, F.Y., Li, X.H., Yang, J.H., Gou, G.N., Guo, H.F. 2015. Late Cretaceous back-arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Sr-Nd-Hf-O isotopic evidence from Dagze diabases, Journal of Geophysics Research: Solid Earth, 120, 6159–6181, doi:10.1002/2015JB011966.
[42]. Jiang, Z. Q., Wang, Q., Wyman, D. A., Shi, X., Yang, J. H., Ma, L., Gou, G. N., 2015. Zircon U-Pb geochronology and geochemistry of Late Cretaceous–early Eocene granodiorites in the southern Gangdese batholith of Tibet: petrogenesis and implications for geodynamics and Cu ± Au ± Mo mineralization. International Geology Review, 57:3, 373-392.
2014
[43]. Ma, L., Wang, B.D., Jiang, Z.Q., Wang, Q.*, Li, Z.X., Wyman, D.A., Zhao, S.R., Yang, J.H., Gou, G.N., Guo, H.F., 2014. Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos, 196-197, 321-338.
[44]. Shen, X.M., Zhang, H.X., Wang, Q., Ma, L., Yang, Y.H. 2014. Early Silurian (~440Ma) adakitic, andesitic and Nb-enriched basaltic lavas in the southern Altay Range, Northern Xinjiang (western China): Slab melting and implications for crustal growth in the Central Asian Orogenic Belt. Lithos, 206-207: 234-251.
[45]. Jiang, Z., Wang, Q., Wyman, D., Li, Z., Yang, J., Shi, X., Tang, G., Jia, X., Ma, L., Gou, G., Guo, H.. 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous-Early Oligocene (~91-30 Ma) intrusive rocks in the Chanang-Zedong area, southern Gangdese. Lithos, 196-197: 213-231.
2013
[46]. Ma, L., Wang, Q.*, Wyman, D.A., Jiang, Z.Q., Yang, J.H., Li, Q.L., Gou, G.N., Guo, H.F., 2013. Late Cretaceous crustal growth of southern Tibet: Petrological and Sr-Nd-Hf-O isotopic evidence from the Zhengga diorite-gabbro suites in the Gangdese area. Chemical Geology. 349–350, 54–70.
[47]. Ma, L., Wang, Q.*, Li, Z.X., Wyman, D.A., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F., 2013. Early Late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area, eastern Gangdese: lithosphere-asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100-80 Ma) magmatic "flare-up" in southern Lhasa (Tibet). Lithos. 172–173, 17–30.
[48]. Ma, L., Wang, Q.*, Wyman, D.A., Li, Z.X., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F.. 2013. Late Cretaceous (100-89 Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos. 175–176, 315–332.
2012 & Before
[49]. Qiang Wang, Xian-Hua Li, Xiao-Hui Jia, Derek Wyman, Gong-Jian Tang, Zheng-Xiang Li, Lin Ma, Yue-Heng Yang, Zi-Qi Jiang, Guo-Ning Gou. 2012. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium‐rich mafic enclaves and dikes in the Tunchang–Fengmu area, Hainan Province (South China): partial melting of lower crust and mantle and magma hybridization. Chemical Geology, 328, 222-243.
[50].Haixiang Zhang, Xiaoming Shen, Lin Ma. 2008. Geochronology of the Altay adakite and the initiation of the Paleo-Asian Ocean subduction. Geochimica et Cosmochimica Acta. 72 (12S), A1081.
|