1. Cheng, F. et al. Deep learning bridged bioactivity, structure and HRMS-readable evidence to decipher non-target toxicants in complex mixtures. Environ. Sci. Technol. 58, 15415–15427 (2024). https://doi.org/10.1021/acs.est.3c10814
2. Huang J. H., Cheng, F. et al. Effect driven prioritization of contaminants in wastewater treatment plants across China: A data mining-based toxicity screening approach. Water Res. 264, 122223 (2024). https://doi.org/10.1016/j.watres.2024.122223
3. Cheng, F. et al. Text mining-based suspect screening for aquatic risk assessment in the big data era: Event driven taxonomy links chemical exposures and hazards. Environ. Sci. Technol. Lett. 10, 1004–1010 (2023). https://doi.org/10.1021/acs.estlett.3c00250
4. Cheng, F. et al. Data-driven endpoint selection in data-poor scenarios: Bioassay design for shale gas flowback and produced waters. Environ. Sci. Technol. Lett. 9, 1074–1080 (2022). https://doi.org/10.1021/acs.estlett.2c00648
5. Cheng, F., Li, H., Brooks, B. W. & You, J. Signposts for aquatic toxicity evaluation in China: Text mining using event-driven taxonomy within and among regions. Environ. Sci. Technol. 55, 8977–8986 (2021). https://doi.org/10.1021/acs.est.1c00152
6. Cheng, F., Li, H., Brooks, B. W. & You, J. Retrospective risk assessment of chemical mixtures in the big data era: An alternative classification strategy to integrate chemical and toxicological data. Environ. Sci. Technol. 54, 5925–5927 (2020). https://doi.org/10.1021/acs.est.0c01062